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Abstract—Coupled application workflows composed of ap-
plications implemented using task-based models present new
coupling and data exchange challenges, due to the asynchronous
interaction and coupling behaviors between tasks of the com-
ponent applications. In this paper, we present an adaptive
data placement approach that addresses these challenges by
dynamically adjusting to the asynchronous coupling patterns.
Specifically, it places data across a set of staging cores/nodes with
an awareness of the application-specific data locality require-
ments and the runtime task executions at these staging cores/
nodes, with the goal of reducing end-to-end execution time and
data movement overhead of the workflow. We experimentally
demonstrate the effectiveness of our approach on the Titan Cray
XK7 system using representative data coupling patterns derived
from current scientific workflows. The evaluation demonstrates
that our approach efficiently improves performance by reducing
the time-to-solution and increasing the quality of insights for
scientific discovery.
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I. INTRODUCTION

Advanced application workflows running on current and

planned extreme scale systems have the potential to enable

dramatic insights into complex phenomena in a range of

disciplines. Recent research has shown that in-memory data

staging and in-situ/in-transit data processing approaches (e.g.,

DataSpaces[6] / ActiveSpaces[7] and FlexPath[4]) can be used

to address data related challenges resulting from the interac-

tions and data exchange requirements of coupled application

workflows executing at extreme scales. These approaches

offload data to separate data staging resources, i.e., in-memory

storage distributed across cores/nodes on the system where the

workflow is running. They also use these staging resources to

handle mismatches in data representation, data distribution and

data production/consumption rates, and to support interactions

and data exchanges between the coupled applications. Note

that staging resources may also be co-located with application

on the same set of compute nodes and utilize node-local

storage resources to stage data and preserve data locality, as

shown in Figure 1.

While these research efforts continue to address data related

challenges of coupled application workflows on current sys-

tems, growing scales (and projected billion-way concurrency at

exascale) are bringing challenges related to exploiting extreme

Fig. 1: A scientific workflow composed of coupled simulations

and analysis components, implemented using data staging.

levels of parallelism to the forefront, and are leading to the

adoption of task-based runtimes, such as Charm++ [2]. These

runtimes employ an asynchronous execution model suited for

extreme scale systems by providing finer granularity of control

over task execution and enabling higher level of concurrency.

However, the decomposition of workflow components into

tasks presents its own set of coupling and data exchange chal-

lenges because of the enhanced granularity, added coupling,

and asynchronous interaction of tasks. Data staging solutions

must address these challenges to fully realize the potential

of these workflows. For example, Figure 2 provides the

execution and coupling of task-based data producer and data

consumer applications. The execution of these applications can

be represented as a directed acyclic graph (DAG), and tasks in

a DAG are executed in parallel as long as no data dependency

exists. In contrast with synchronous coupling (Figure 2a), the

fine-grained asynchronous coupling (Figure 2b) may increase

the parallelism among workflow components to improve the

overall performance of the workflow. The effectiveness of

staging-based approach for workflows is sensitive to the data

placement across the staging cores/nodes as it can directly

impact the scheduling and execution of application tasks.

Appropriate data placement can leverage asynchronous cou-

pling behaviors to maximize the potential of overlapping the

execution of workflow components, so as to significantly

improve the overall performance of the workflows.

In this paper, we propose an adaptive application-aware

data placement approach that can efficiently support coupled

application workflows requiring asynchronous coupling, such

as those composed of task-based component applications. In

this approach, we take advantage of asynchronous coupling

patterns of the component applications to determine which
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Fig. 2: Illustration of synchronous and asynchronous coupling

between task-based applications.

data to place and where to place the data so as to optimize the

parallel execution of application tasks while also reducing data

movement costs, with the overall goal of improving the end-to-

end performance of the workflow. Specifically, we analyze the

data affinity using dataflow graphs, and use this information

to place data so as to preserve locality. We also monitor and

estimate the execution of application tasks on each staging

core, and use this information to appropriately place data in

an computation-aware manner so as to avoid load imbalance at

the staging cores. Note that this data placement is performed in

an online manner while the data is being transferred from the

data producer tasks to the staging area, which are co-located

with the data consumer tasks.

We have developed a prototype runtime system that im-

plements our adaptive data placement approach on top of the

DataSpaces framework and have deployed it on the Titan Cray

XK7 system at the Oak Ridge Leadership Computing Facility

(OLCF). We use this implementation to experimentally eval-

uate performance of our runtime using application workflows

with two representative coupling patterns: tightly coupled and

loosely coupled, and using two different applications: (a) task-

based AMR (Adaptive Mesh Refinement) simulation using

Charm++, (b) Topological Analysis. The effectiveness of our

data placement approach, in terms of the improvement in the

overall time-to-solution and the quality of data analysis, is

evaluated. Results show that our approach results in up to

2.8 times speedup in the end-to-end execution time of the

workflow, and an increase in the frequency of performing data

analysis of 42%.

In this paper, we make the following contributions: (1)

we present a data placement approach that targets coupled

application workflows with asynchronous coupling patterns to

adaptively place data across the staging cores with awareness

of runtime workload and data locality, so as to improve the

overall performance of the workflow (in terms of end-to-end

execution time and data movement) and/or improve the quality

of data processing; (2) we implement and deploy a runtime

system based on our adaptive data placement approach on

Titan, and demonstrate its effectiveness and performance using

workflows with distinct coupling patterns.

The rest of this paper is organized as follows. Section 2

describes our data placement approach. Section 3 presents the

design and the implementation of our runtime system. Section

4 presents the experimental evaluation. Section 5 provides

related work, and Section 6 concludes the paper.

Fig. 3: Overview of the adaptive data placement approach.

II. ADAPTIVE DATA PLACEMENT

Interactions and data exchange during the execution of an

application workflow using a staging-based approach proceeds

as follows. Data producer tasks write data to the staging area

by issuing a write request and then immediately proceed with

their computation. Meanwhile, data written by these tasks is

asynchronously transferred, using RDMA, to staging resources

at the nodes that run the data consumer application. When

this data is available in staging, a runtime scheduler flexibly

schedules data consumer tasks on the cores where the required

data is stored.

Thus, data placement across staging cores affects when and

where the consumer application tasks are executed. Appropri-

ate data placement should maintain data locality to avoid large

amount of data movement across the network, while balancing

computational load across the nodes. The data placement

approach presented below considers both these aspects.

A. Overview of our approach

We design an efficient data placement approach across

staging resources to support coupled application workflows

with asynchronous coupling patterns. An overview of our

approach is presented in Figure 3. Our approach consists of

two steps. First, we determine which data to place based on

both when the data is available, and the priority of the data

relative to how much time is needed to process it. Second,

we determine where to place the data based on application-

specific data locality requirements and the runtime load at the

staging cores. Typically, our approach selects staging cores

that will finish data processing earlier and/or achieve lower

data movement costs.

B. Data prioritization

Incoming data arrives asynchronously and is processed by

our approach in a FIFO order. However, for data that arrives

concurrently or within a short time window, our approach

inserts each data placement request into a queue and prioritizes

these requests based on their corresponding processing times,

i.e., the Estimated Execution Time (EET ). Typically, data

with a relatively longer EET will be assigned with a higher

priority, and thus will be placed onto staging cores earlier. This

prevents tasks with longer execution times from becoming the

bottleneck in the execution.

To efficiently estimate the execution time (EET (d)) of a

task that consumes data d as its input at runtime, we use

the observation that iterative scientific applications exhibit

repetitive execution behaviors – across different time steps,

tasks accessing the same data perform similar functions, and

thus are likely to have a similar execution time. Therefore, we
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Name Policy Description
DATA Place data based on data affinity to minimize data movement
TIME Place data based on task execution time to minimize end-to-end time
HYBRID Place data based on both task execution time and data affinity

TABLE I: Adaptive data placement policies.

monitor and compare the execution time of tasks that process

the same data across consecutive time steps and use this

information to anticipate their execution time for subsequent

time steps. More specifically, if the monitored task execution

time for data d at time steps T − 1 and T − 2 are T imeT−1
d

and T imeT−2
d , respectively, we estimate the execution time

for data d at time step T as:

EET (d)T = T imeT−1
d + σd;σd = T imeT−1

d − T imeT−2
d

This estimation mechanism works for different kinds of

applications. For applications where the task runtime is pro-

portional to the size of the input data, e.g., visualization

tasks like Iso-surface Extraction and Volume Rendering, our

approach captures the historical information (i.e., task execu-

tion times at the initial time steps) and uses it to estimate

future execution times. For other applications where task

runtimes may vary depending on the data values, like in feature

tracking (i.e., topological analysis), data that contains more

features may require longer execution times. Our approach

leverages application-level temporal locality along with the

observation that the simulation evolves predictably over time,

which implies that if a feature appears in a certain data domain

at the current time step, then it will likely appear in the

same or nearby domains at the next time step. The evolution

of features provides us with hints about the corresponding

task execution times. In general, this approach is simple yet

effective and introduces low overheads, as our evaluation,

presented in Section 4, demonstrates.

C. Resource selection

We determine where to place data based on computational

load and data affinity information. We refer to the staging
cores as the resource in the following section.

1) Estimating computational load: To acquire the compu-

tational load at resource r as a result of placing data d, we

compute the Estimated Completion Time (ECT (d, r)). It is

calculated based on Data Available Time (DAT (d)), Esti-

mated resource Available Time (EAT (r)) and the Estimated

Execution Time (EET (d)) acquired above, as follows:

ECT (d, r) = EET (d) +max(DAT (d), EAT (r))
After placing data d on resource r, the EAT(r) of the

resource will be updated accordingly.

2) Determining data affinity: Data placement determines

the required data movement among tasks during the execution.

For example, Figure 4 shows the dataflow graph for Topo-

logical Analysis [10] using binary reduction of a merge tree

computation. Each vertex represents a task, while each edge

indicates the size of the data transferred between the pair of

tasks. The leaf tasks at level 1 (i.e., T0 – T3) read data from

staging (i.e., D1 – D4), and communicate with tasks at level

2. Assuming that data staging is composed of two nodes, if

D3 and D1 are placed on cores located on different nodes,

T0 and T1 will be executed on different nodes accordingly.

Fig. 4: An illustration of our approach for partitioning a

dataflow graph. There are four data objects in the data domain,

which are read by four Topological Analysis tasks, (T0 - T3)

respectively. After partitioning, the task graph has been split

into two components by the solid blue line. As a consequence,

our approach identifies the pairs D1 and D3, and D2 and D4

as having high data affinity.

Consequently, no matter where T4 is executed, the output of T0

or T1 has to be moved across network. Alternately, if D3 and

D1 are placed on the same node, the data movement among

T0, T1 and T4 can be localized.

In most task-based runtimes, task/dataflow graphs that

represent the data dependency/movement among tasks can

be obtained using provided tools, such as Legion Prof and

Charm++ LiveViz. Our approach leverages this information to

achieve locality-aware data placement. For example, we co-

locate tasks that communicate frequently with large amounts

of data movement in order to localize the communication and

reduce data movement costs across the network. To do this,

we use METIS [9] to partition the dataflow graph into N
components with the objective of minimizing data movement

among components while keeping the data required by tasks in

each component balanced, where N is the number of staging

nodes. After partitioning, the data required by tasks in the

same component are considered to have higher affinity, and are

preferred to be placed together. For example, in Figure 4, the

graph has been split into two components, which are mapped

to two staging nodes. Based on the partitioning, it is better

for D1 and D3, D2, and D4 to be placed on cores within

a single node. Note that since communication patterns are

always predefined and stay the same for iterative scientific

applications, this operation needs to be performed only once

to determine the data affinity.

D. Placement policies

Using the information described above, our approach sup-

ports flexible data placement policies to meet different data

placement objectives. These policies are summarized in Ta-

ble I. Users can specify their preferences as an input to

select either TIME or DATA, which aim to reduce end-to-

end execution time or data movement respectively. In the case

of TIME, the resource with minimum Estimated Completion

Time (ECT) is selected. Alternately, in the case of DATA, the

resource with maximum data affinity is selected. If the policy

is not specified by users, a HYBRID policy will be used by

default. This policy identifies resources where ECT is within
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Data generation sequenceD1D2
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(a) Data placement using TIME and HYBRID 

(b) Data placement using DATA

T1

T0 T3

T1 T0
T2 T3

0        1        2        3        4        5        6        7

0        1        2        3        4        5        6        7

Fig. 5: An example of placement for four data (D1 – D4) onto

two staging cores (R1 and R2), and the corresponding timing

of task executions on these staging cores.

a certain range (i.e., smaller than 1.2 times of the minimum

ECT), and then selects the one with maximum data affinity.

This policy typically results in a trade-off between execution

time and data movement.

To illustrate this approach, in Figure 5, four data objects

arrive at timestamps 0.5, 1, 1, and 2, and tasks that read these

data are shown in Figure 4. The data needs to be placed

onto two resources (i.e., staging cores), and the Estimated

Execution Times (EET) for the tasks are 3, 1, 3, and 1 for

D1 – D4. Based on data available time and priorities, our

approach places D1 first, and then D3 because its priority

(EET) is larger than that of D2. For resource selection, using

the TIME policy, a resource with minimum ECT is selected

(as shown in Figure 5(a)). As a result, the total execution time

is 5. The HYBRID policy results in the same data placement

as the TIME policy. However, using the DATA policy, D3 is

placed on the same core with D1 to reduce data movement.

Thus both T1 and T0 are executed on R1, which is obviously

overloaded compared to R2. In this case, the total execution

time is 6.5.

The time complexity of our online adaptive data placement

approach is determined by the number of data requests, M ,

and the number of staging resources, N . We use a max-/min-

heap to maintain unplaced data requests based on priority

and staging resources based on ECT and/or data affinity. The

construction of these heaps takes O(M ) and O(N ) time for

data requests and staging resources, respectively. After initial-

ization, we pick available data in each step and select a core

to place it, which can be done in O(1). Our approach updates

the corresponding heaps when the process is idle to minimize

the impact on performance of runtime data placement.

III. IMPLEMENTATION OF A RUNTIME SYSTEM FOR

ADAPTIVE DATA PLACEMENT

We have implemented a runtime system that incorporates

our adaptive data placement approach into the DataSpaces

data staging framework [6]. The schematic overview of the

overall architecture of the runtime is presented in Figure 6.

It leverages the Data Communication Layer, Data Lookup
Service, and Data Storage from DataSpaces, reusing its data

Fig. 6: Architecture of the runtime system for adaptive data

placement. The shadowed area represents components of

DataSpaces that are reused by the runtime.

transport, data locator, and updater capabilities. Following the

DataSpaces architecture, our system consists of a client-side

subsystem that is co-located with the applications in a given

workflow, and a server-side subsystem that manages metadata.

In this section, we describe the implementation details of the

Data Organization Module.

A. Task Monitor and Predictor

The Task Monitor and Predictor components are responsible

for monitoring and estimating the running time of tasks.

Specifically, the Task Monitor keeps track of data read requests

from the data consumer and extracts the data information (i.e.,

bounding box that describes the data) in the request. It logs

the timing of data read requests from the same process and

uses the time interval between two consecutive requests as

the measurement of task execution time. The Task Monitor
collects this information after each time step. The Predictor
then uses this captured historical information to estimate the

running time of tasks in the subsequent time steps, as described

in Section 2.

B. Data Affinity Discovery

The Data Affinity Discovery component of our framework

is responsible for identifying data dependency and movement

among tasks in the data consumer application. It uses tools

provided by a task-based runtime to obtain dataflow graph. A

server selected as the master server is responsible for gathering

this graph, utilizing METIS to partition the graph, and gener-

ating data affinity. Such affinity information can be used in the

Data Placement component to reduce data movement. Since

task/data dependency information does not change in iterative

applications, this discovery process only needs to be performed

once, after the 1st time step of data consumer, and in parallel

with the execution of data producer application. Therefore, it

has little impact on the overall workflow performance.

C. Data Placement

The Data Placement component is responsible for making

the data placement decision based on the information provided

by the Data Affinity Discovery, Task Monitor and Predictor
components. Specifically, each server receives the data write

requests from its mapped clients and redirects them to the

master server to determine placement. Based on the data
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Fig. 7: Illustration of interactions and data exchanges be-

tween coupled application for XGC1-XGCa and AMR-

Analysis/Visualization workflows with synchronous cou-

pling(a,c) and asynchronous coupling(b,d).

placement approach described in Section 2, the master server

selects a resource and forwards the data write request to

the server that has the corresponding metadata information

to process the request. After data has been put onto the

staging cores, the data location is then updated and stored

in a distributed hash table (DHT) constructed across all the

servers. This DHT is part of the DataSpaces framework, which

is detailed in our previous work [6].

D. Lock Manager

The Lock Manager is a routine to obtain/release exclusive

rights to access the shared space and ensure data concurrency.

In order to provide fine-grained and asynchronous data access,

each data stored in the data storage is associated with a lock.

The lock information of data is partitioned across all the

servers using a similar mechanism as DHT.

For each data write/read, the task has to obtain locks for

required data by sending a request to its mapped server. Lock
Manager hashes the spatial information associated with a data

write/read request and determines which server this data is

assigned to. This server is responsible for maintaining the

latest lock status (i.e., write/read lock) for all of its assigned

data. Similar to other locking mechanisms, Lock Manager
allows concurrent read and exclusive write operations. For

requests that can get the lock immediately, Data Lookup will

be invoked to locate the data and update the lock status.

Otherwise, Lock Manager buffers the request in a queue and

responds to these requests in a FIFO manner.

IV. EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation

of our application-aware adaptive data placement approach.

Our experiments were performed on the Titan Cray XK7

supercomputer at ORNL. Titan has 18,688 compute nodes

connected using the Gemini interconnect network; each node

has a single 16-core AMD 6200 series Opteron processor and

32GB of memory.

We performed experiments to evaluate the effectiveness of

our adaptive data placement approach in supporting coupled

scientific workflows using representative coupling patterns:

tightly coupled and loosely coupled. Figure 7a illustrates the

interaction and sequential execution of two tightly coupled ap-

plications, using the coupled plasma fusion simulation XGC1-

RR(blocking) RR
(non-blocking)

TIME Speedup

Fig. 8: A comparison of cumulative end-to-end execution time

over 100 time steps using different data placement approaches.

The number of cores used for AMR increased from 256 to

8192. The speedup of TIME over RR(blocking) is also plotted

using the right axis.

XGCa as an example. Figure 7c illustrates the concurrent

execution of a loosely coupled workflow using an AMR code

in conjection with an analysis/visualization application as an

example. In our experiments, we used two workflow scenarios

with each workflow consisting of two applications coupling

asynchronously. In the first test workflow, applications are

tightly coupled and executed in sequential order (Figure 7b).

In the second test workflow, applications are loosely coupled

and run concurrently (Figure 7d). We used Adaptive Mesh

Refinement (AMR), Topological Analysis, and Iso-surface

Extraction as the component applications in the workflows.

A. Performance evaluation for tightly coupled workflows

To the best of our knowledge, the applications that are

part of the targeted tightly coupled workflows do not yet

have task-based implementations. Thus we used two task-

based AMR [1] codes implemented in Charm++ to emulate the

sequential execution of two applications in the tightly coupled

workflow. Note that although our AMR codes are implemented

using Charm++, our approach is not limited to any single

task-based runtime. Furthermore, workflow components can

be implemented using differing runtimes.

Charm++ implemented AMR [1] code is a finite-difference

simulation of advection. It removes scalability bottlenecks in

the use of collective communication in existing AMR by refor-

mulating the communication asynchronously. Thus tasks that

work on data blocks execute asynchronously, communicating

only with neighboring blocks when required.

We refer to the two AMR applications composed as part

of the workflow as APP1 and APP2. The execution of this

workflow consists of multiple coupling cycles with two-way

data exchange. In each coupling cycle, the workflow first

executes one time step of APP1, the output data are then read

by APP2 as input. Similarly, APP1 takes the output from APP2
to start the execution of a new time step. Both APP1 and APP2
read/write data from/to staging to exchange data.

Since the data exchanged between the AMR tasks is small

in size, our adaptive data placement focused on reducing

execution time (i.e., using the TIME policy) in this experiment.
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Number of cores 514 1028 2056 4112 8224 16448
No. of APP1 cores 256 512 1024 2048 4096 8192
No. of staging cores 2 4 8 16 32 64
No. of APP2 cores 256 512 1024 2048 4096 8192
Domain size 1024× 1024× 1024

TABLE II: This table presents the core-allocations and data

domain size used in the tightly coupled workflow scenario.RR(blocking)
RR
(non-blocking) TIME Speedup

Depth of re nement
Fig. 9: A comparison of cumulative end-to-end execution

time with various refinement depth ranges of AMR using

different data placement approaches. The speedup of TIME
over RR(blocking) is also shown on the right axis.

For comparison purposes, we compared the performance of

TIME with static Round-Robin placement, which is com-

monly used for organizing multidimensional data generated

by scientific applications across data staging nodes or parallel

storage. We used Round-Robin in two different modes. The

first is a blocking mode (RR(blocking)), in which data producer

tasks perform a synchronous write at the end of each time

step, while data consumer tasks perform synchronous reads

at the beginning of their execution. Such write/read behavior

is quite common among applications implemented in the

traditional SPMD model. The other is a non-blocking mode

(RR(non-blocking)), in which both data producer tasks and

data consumer tasks perform asynchronous write/read. The

configuration for these experiments is summarized in Table II.

Detailed experimental results and comparisons are presented

below. Note that these results are averages over 20 runs.

In this set of experiments, end-to-end execution time was

the key metric used to evaluate the performance using different

data placement approaches. The cumulative end-to-end execu-

tion time over 100 time steps is shown in Figure 8. Compared

with RR(blocking), both RR(non-blocking) and our adaptive

data placement (TIME) achieve better performance due to

concurrent execution of coupled applications. Particularly, our

approach shows significant benefits in terms of the time-to-

solution compared with static RR(non-blocking) approach. The

improvement is mainly a result of the runtime workload-aware

mechanism that balances the workload across staging cores. It

also shows the effectiveness of our prediction of task execution

time. Indeed, based on the characteristic of AMR, the task

execution time is proportional to the input data size. This

attribute can be efficiently captured by our framework during

the initial time steps to achieve effective data placement.

In addition, we plot the speedup of TIME over RR(blocking)
– the default approach used in DataSpaces. We can observe

that in the case of 1k cores, our approach achieves up to

2.83 times speedup by improving the parallelism in workflow

execution. However, for smaller core counts (i.e., 256), the

RR(

blocki
ng)

RR(non
-

bloc
kin

g)
DAT

A
TIME

HYB
RID

AMR
RR(blocking)

R
R(non-blocking)

DATA
TIME

HYBRID

D
at

a 
M

ov
em

en
t(

M
B)

Time(s)

(a) (b)
Fig. 10: The comparison of (a) the timing of Topological

Analysis in one time step with respect to the execution of

AMR, (b) the size of data movement during the execution of

Topological Analysis in one time step, using different data

placement approaches.

improvement is limited by the available staging cores, while at

larger core counts (i.e., 8k), the application runs approximately

one task per core, which gives us little space for improvement.

Thus, the corresponding speedup is not as significant but is still

larger than 1.9 times in average.

To further evaluate the performance, we used 8k cores for

each AMR, and increased the refinement depth, specifically

the maximum depth, which increases the number of tasks.

Figure 9 plots the cumulative end-to-end execution time over

100 time steps for different depth ranges. We can observe

that for a given minimal depth, increasing the maximum depth

actually increases the improvement in our approach. Compared

to RR(blocking), our approach attains a speedup of 1.9 when

depth ranges from 4 to 6, and the speedup increases to 2.68

when the depth ranges from 4 to 9. The results shows that

the potential benefits of parallelism gained by using our data

placement approaches grows as the number of tasks increases.

System overheads: System overheads are mainly due

to runtime data placement across staging cores. We have

identified three primary sources of overheads: (1) time to

acquire task execution time, (2) time to collect task runtime

information, and (3) time to determine data placement. We

measured the overheads of data placement, which is smaller

than 0.001 second in average for each placement request, thus

can be considered negligible when compared to simulation

time. In addition, most of these overheads come from the

communication and computation among metadata servers,

which can be performed in parallel with the applications’

computation. Therefore, the introduced overhead would not

have too much impact on the end-to-end execution time of

the workflow, as shown in the experiments.

B. Performance evaluation for loosely coupled workflow

In this experiment, we used AMR in conjection with Topo-

logical Analysis workflow. Different from the previous exper-

iments, the two coupled applications are running concurrently.

AMR writes data while Topological Analysis reads the data

and performs online data processing without impacting the

execution of AMR.

In the loosely coupled workflow, using different data place-

ment approaches may not have much impact on the end-to-

end time of workflows because simulation time is always the

dominant factor. However, it may impact the effectiveness
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of an execution from a science perspective. For exmaple,

the frequency at which data analysis is performed impacts

the ability to capture intermittent phenomena. In this set of

experiments, we measured how often can analysis be per-

formed, without significant impact on the end-to-end execution

time. The configuration for these experiments was as follows:

the number of cores allocated for AMR and Topological

Analysis was 2048 and 256 respectively, with 16 cores used

for the metadata servers. The data domain used by AMR was

1024× 1024× 1024.

The Topological Analysis code was developed by Lawrence

Livermore National Laboratory using a k-way hierarchical

reduction algorithm [10]. This algorithm involves four kinds

of tasks: local computation, join, correction, and output. Local
computation tasks read data from simulation and perform

purely independent computation as soon as data is available,

i.e., asynchronous read patterns. Join and correction require

inter-task data movement within a group of tasks. In our study,

we set k = 8, which is commonly used to perform a more

spatially coherent merge. The dataflow graph is similar to the

binary reduction dataflow with k = 2 shown in Figure 4 in

Section 2.

In this experiment, we took both execution time and data

movement into consideration and measured the performance of

our adaptive data placement approach using the different poli-

cies, i.e., TIME, DATA and HYBRID. A detailed description

of these policies is in Section 2. We also compared them with

the Round-Robin approaches, i.e., RR(blocking) and RR(non-
blocking).

Figure 10a shows the timing of Topological Analysis at

one time step using different data placement approaches. The

execution time of AMR is also shown in the figure as the

baseline for comparison, which starts from 11th time step

and includes 5 time steps in total. As expected, using TIME,

Topological Analysis starts and also finishes much earlier than

using RR(blocking), which enables it to analyze simulation

data more frequently.

Comparing the results of adaptive approaches using dif-

ferent placement policies, using TIME, Topological Analysis

finished earlier than using DATA, but generated a larger

amount of data movement, as shown in Figure 10b. This

is because better data locality may result in load imbalance

across staging cores, causing a longer execution time. In

comparison, using HYBRID, the execution time is a little

longer than TIME, but the size of data movement is 8.7MB,

compared to 39.4MB for TIME. These results are consistent

with the objectives of the different policies. Note that although

the size of the data movement is not large in one time

step in this case, for communication-/data-intensive workflows

running thousands of time steps, reducing data movement can

significantly improve the performance of the workflow by

alleviating network contention/ congestion.

After measuring the performance of Topological Analysis

at one time step, we also measured how often Topological

Analysis could be performed during a simulation run of 100

time steps. We varied the number of cores used for Topological
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Fig. 11: A comparison of the frequency of Topological Analy-

sis that can be performed during 100 time steps of simulation

using different data placement approaches. The number of

cores for Topological Analysis is 256 and 512, respectively.

analysis to 256 and 512. As shown in Figure 11, we achieved

the highest possible frequency for performing Topological

Analysis, i.e., at every time step, using TIME in the case of

512 cores. In contrast, using RR(blocking), we were able to

perform analysis at every time step in the first 40 time steps,

and at every other time step in the last 60 time steps due to the

increasing volume of simulation data, thus 70 times in total.

V. RELATED WORK

Task-based runtime and applications: Recently, asyn-

chronous many task (AMT) models and runtime systems have

received a lot of attention [8], [3]. There are many production

applications that have already been implemented using task-

based runtimes, such as S3D with Legion [8] and NAMD

with Charm++ [13]. Recent researches [3] mainly focus on

workflows composed of applications that are implemented in a

single task-based runtime. In this manner, the built-in runtime

scheduler can efficiently support the code coupling with the

awareness of the coupled applications in a workflow. However,

supporting a wide-range of applications across a variety of

disciplines can result in a diverse set of requirements where

components of the same workflow may utilize different task-

based runtimes. In this case, the built-in schedulers cannot

coordinate with each other conveniently and efficiently. To

address this, our work aims to provide a more generic solution

– using data staging – to efficiently support the code coupling

for a wider range of scientific workflows.

Data management in scientific workflow management
systems: Traditionally, intermediate files within a workflow

are stored in shared storage systems or distributed storage

systems, such as Swift [15] and Pegasus [5]. This approach

can be easily used for coupling scientific application but

may introduce significant I/O overheads. Also, shared storage

APIs, i.e., POSIX, constrain the communication between the

storage and runtime systems which prevents locality-aware

task scheduling.

Some researches have proposed coupling datastore services

with a workflow runtime engine, such as Falkon [11]. This

approach gives up the layered design, but is still designed

and optimized for a single application or for applications

implemented within the same runtime. Supporting component

applications using different runtimes remains challenging due
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to the distinct requirements imposed on external storage sys-

tems. Our data placement approach aims to bridge that gap in

order to support efficient coupling for scientific workflows.

In-staging data placement: A number of data-staging

frameworks, such as DataSpaces [6] and Flexpath [4], have

been developed in recent years to support scientific workflows

using memory within a data stagng area for runtime data

coupling and exchange. Our previous work [12] optimize the

data placement in staging based on network topology to reduce

data access overheads. However, these works have focused on

workflows with synchronous coupling of applications imple-

mented in SPMD mode, thus can be inefficient for supporting

asynchronous coupling exhibited by task-based applications,

as demonstrated in the experiments.

Workflow-aware storage system: Several research efforts

target workflow-based applications, which have similar fine-

grained and asynchronous coupling among tasks. AMFS [16]

and MemFS [14] propose a distributed in-memory runtime

file system. Since AMFS only issues local reads/writes to

utilize the high bandwidth of local memory, it may lead to

load imbalance, which impacts performance and scalability.

In contrast, MemFS scatters data among all the nodes to

achieve a well-balanced workload storage for executing tasks,

based on the assumption that the data movement costs across

the network are negligible. However, in current HPC systems

like Titan, the network contention/congestion can significantly

impact the data access performance [12]. Our runtime system

takes both data locality and load balancing into consideration

to optimize the data placement.

VI. CONCLUSION

In this paper, we propose an in-staging data placement

approach to improve time-to-solution for task-based scien-

tific workflows. Our approach leverages the asynchronous

coupling of applications to optimize the data placement in

a staging area based on application-specific data locality

requirement and runtime performance of task executions on

staging cores/nodes. This paper also presents the design and

implementation of a runtime system that realizes our approach.

We have deployed this runtime on Titan Cray XK7 system

and experimentally evaluated it with representative scientific

workflows. The results demonstrate that our data placement

approach can effectively improve the end-to-end execution

performance, reduce overall data movement, and also increase

the quality of scientific insights.
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